Towards Understanding Normalization in
Deep Learning and its Applications

Ping Luo
The Chinese University of Hong Kong (CUHK)

VALSE Webinar, 2018-10-24

Outline

1. Whitened Neural Network (WNN) (Desjardins etal. NIPS15)

* Relations between network design and optimization
o Post-GWNN (Luo ICML17)

2. Batch Normalization (BN)
* Regularization and Generalization (Luo etal. arXiv:1809.00846)
3. Switchable Normalization (SN) (Luo etal. arXiv:1806.10779)

4. More Techniques
« Kalman Normalization (KN) (wang etal. NIPS18)
 Instance-Batch Normalization Network (IBN-Net) (Pan etal. ECCV18)

5. Discussions and Future Work

Whitened Neural Network (WNN)

PART 1

Relations between Network Design and Optimization

pt+1 = 9t — F-17,£(9, f (x; 0))

Relations between Network Design and Optimization

pt+1 = 9t — F-17,£(9, f (x; 0))

Relations between Network Design and Optimization

pt+1 = 9t — F-17,£(9, f (x; 0))

Relations between Network Design and Optimization

Natural Gradient Descent gt+1 — gt _ p—1 5 :
(NGD): 0 0 F~ Vo L(y,f(x;0))

Relations between Network Design and Optimization

Natural Gradient Descent Qt+1 — gt _ p—1 5 :
(NGD): 0 0 F~ Vo L(y,f(x;0))

F: Fisher Information Matrix (FIM)

Relations between Network Design and Optimization

Natural Gradient Descent gt+1 — gt _ p—1 5 :
(NGD): 0 0 F~ Vo L(y,f(x;0))
SGD: F =1 works well.

Relations between Network Design and Optimization

Deep Learning turns Optimization Problems into
Feed-Forward Network Design.

Multilayer Perceptron (MLP)

MLP: R ¢!
i || Oi

Forward:

Multilayer Perceptron (MLP)

MLP: h !
i || Oi

Forward: ht = Wiopt1 (linear transformation)

Multilayer Perceptron (MLP)

layer input

Forward: ht = Wioi1 (linear transformation)

hidden feature network parameter

Multilayer Perceptron (MLP)

Forward: ht = Wiopt1 (linear transformation)

MLP: h ¢!
. h'—E[R']
OMES . (batch normalization)
oi—1 HRE 0! \/Var(h‘)

Multilayer Perceptron (MLP)

Forward: ht = Wiopt1 (linear transformation)

MLP: R ¢!
. h'—E[R']
OMES . (batch normalization)
oi—1 HRE 0! \/Var(h‘)
ol = max(0,a¢p’ + B) (nonlinear activation)

Multilayer Perceptron (MLP)

Forward: ht = Wiopt1 (linear transformation)

MLP: R ¢!
. h'—E[R']
OMES . (batch normalization)
oi—1 HRE 0! \/Var(h‘)
ol = max(0,a¢p’ + B) (nonlinear activation)

* Natural gradient descent (NGD) with Fisher information matrix (FIM)
F, th_|_1 — th - /‘l,tFt_:lVth.

WNN is NGD
A DNN with llayers.

F11 Fij
F22

Fi; Fy

 Natural gradient with Fisher information matrix (FIM) F is defined as
th_|_1 —_ th - AtFt_lthl

WNN is NGD
A DNN with llayers.

F11 Fij
F22

Fi; Fy

 Natural gradient with Fisher information matrix (FIM) F is defined as
th_|_1 —_ th - AtFt_lthl

WNN iS NGD Covariance of gradients

F.. = [E[vec(VWi)veC(VWj)T]

A DNN with [layers. L
Fi1 Fij
F3;
F =
| Fij Fy

 Natural gradient with Fisher information matrix (FIM) F is defined as
th_|_1 —_ th - AtFt_lthl

WN N iS NG D vectorization gradient: VW' = oi—lAhiT

F.. = [E[vec(VWi)veC(VWj)T]

A DNN with [layers. L
Fi1 Fij
F3;
F =
| Fij Fy

 Natural gradient with Fisher information matrix (FIM) F is defined as
th_|_1 —_ th - AtFt_lthl

WNN i1s NGD
A DNN with llayers. _
Fi1 Fij
F
= 22
| Fij Fy

lj

vectorization gradient: VW' = oi-1ARLT

F.. = [E[vec(VWi)veC(VWj)T]

= E[(AR' ® 0'"1) (AR ® o/71)]

 Natural gradient with Fisher information matrix (FIM) F is defined as

Wt = W — A F7TTWE.

WN N iS NG D vectorization gradient: VW' = oi—lAhiT

Kronecker product
F.. = [E[vec(VWi)VeC(VWj)T]

A DNN with llayers. _ ij
Fiq Fij = E[(AR' @ 0'71) (AR @ o/71)]
F
F = 22
| Fij Fy

 Natural gradient with Fisher information matrix (FIM) F is defined as
th_|_1 —_ th - AtFt_lthl

WN N iS NG D vectorization gradient: VW' = oi—lAhiT

Kronecker product

A DNN with [layers. Fij = E[vec(YW*)vec(VW/)"]
Fiq Fij = E[(AR' @ 0'71) (AR @ o/71)]
(mixed-product _ wrapif Api\L i—1(,j—-1\T
) D— F22 property) ElAR (Ah) ® o (0) |
| Fyj Fy |

 Natural gradient with Fisher information matrix (FIM) F is defined as

Wt = W — A F7TTWE.

WN N iS NG D vectorization gradient: VW' = oi—lAhiT

Kronecker product

A DNN with [layers. Fij = E[vec(VW!)vec(VW/)']
Fiq Fij = E[(AR' @ 0'71) (AR @ o/71)]
(mixed-product _ mrapi(ARJ\T i—1(,j—-1\T
P = Fys Sroperty) E[Ah (Ah) X o (0)]
’ (independence) = E :Ahi(Ahj)T] 03y E[Oi_l(Oj_l)T]
| Fij Fy

 Natural gradient with Fisher information matrix (FIM) F is defined as
th_|_1 —_ th - AtFt_lthl

WN N iS NG D vectorization gradient: VW' = oi—lAhiT

Kronecker product

A DNN with [layers. Fij = E[vec(VW!)vec(VW/)']
Fiq Fij = E[(AR' @ 0'71) (AR @ o/71)]
(mixed-product _ mrapi(ARJ\T i—1(,j—-1\T
P = Fys Sroperty) E[Ah (Ah) X o (0)]
’ (independence) =~ [E :Ahi(Ahj)T] 03y E[Oi_l(Oj_l)T]
| Fij Fy

 Natural gradient with Fisher information matrix (FIM) F is defined as
th_|_1 —_ th - AtFt_lthl

WN N iS NG D vectorization gradient: VW' = oi—lAhiT

Kronecker product

A DNN with [layers. Fij = E[vec(VW!)vec(VW/)']
Fiq Fij = E[(AR' @ 0'71) (AR @ o/71)]
(mixed-product _ mrapi(ARJ\T i—1(,j—-1\T
P = Fys Sroperty) E[Ah (Ah) X o (0)]
. . T : N
(independence) = E_Ahl(Ah]) | ® E[Ol_l(()]_l) |
| Fij Fy

e Goal:

WNN is NGD

A DNN with [layers. Fij = E[vec(YW*)vec(VW/)"]
F11 Fl-j = E[(AR' ® 0'"1) (AR ® o/71)]
N i (AR @ (o
~ E[ARi(ART)'] ® [0 (0/71)']
Ry Fu_ F; = E[Ahi(ARY)] ® E[oi"(0'"1)']

WNN is NGD

A DNN with [layers. Fij = E[vec(YW*)vec(VW/)"]
F11 Fl-j = E[(AR' ® 0'"1) (AR ® o/71)]
N i (AR @ (o
~ E[ARi(ART)'] ® [0 (0/71)']
Ry Fu_ F; = E[Ahi(ARY)] ® E[oi~(0'"1)']

EigenNet, [JCAIL17 WNN. NIPS15

GWNN, ICML17

WNN is NGD

4) W hiten both

llllll

TIAE T
]
HE

3) Whiten backward

FH -

N T B v B L 1
W o R
W ot i L S
Fa b vl 4. Tl
Sl s de Aad
A vl VS al
o e TR T
S T
NS LN
A A o H

7

hiten forward

» Approximate Fj; =]E[Ahi(Ahi)T] X]E[oi_l(oi_l)T] ~ |

Whitened Neural Network (WNN)

hl(pl l_l hl d)l

II

Whitened Neural Network (WNN)

~l—1 i
h' qbl h' ¢ min L

IIIII)

II

Whitened Neural Network (WNN)

~l—1 i
h' qbl h' ¢ min L

why
s.t. E ‘1‘1T]—I
L~ ht,

II

Whitened Neural Network (WNN)

whitened layer input

~i—1
hlqbl o' hl('bl min L

why
s.t. E ‘1‘1T]—I
L~ ht,

II

Whitened Neural Network (WNN)

before whitening after whitening

h' fpl min L
wh

i AT
s.t. E[al—lal—l]=1,

II

WNN smooth solution space while maintains representation capacity.

Whitened Neural Networks (WNN)

ot 1 figt Forward: zi-1 — pi-1(pi-t — yi=1) E [51'—151'—1T] _

IIIII h

Whitened Neural Networks (WNN)

l—l hl d)l Forward : 5i—1 — Pi—l(oi—l . ,Lli_l),E lai—lai—lT] —

(whitening)
Wi — yyini—1
h> =W"o (linear transformation)

Whitened Neural Networks (WNN)

ot 1 figt Forward: zi-1 — pi-1(pi-t — yi=1) E [51'—151'—1T] _

(whitening)
74— [~i—1
h> =W=o (linear transformation)
R
Pt = (batch normalization)
\[Var(h!) (nonlinear activation)

Whitened Neural Networks (WNN)

l—l hl d)l Forward : 5i—1 — Pi—l(oi—l . ,Lli_l),E lai—lai—lT] —

(whitening)
Rl yigi-1 _ _
- (linear transformation)
R
Pt = (batch normalization)
\[Var(h!) (nonlinear activation)

e In WNN (Desjardins etal. NIPS15) and GWNN (Luo ICML17), E[éi‘lai‘lT] =I.

 In EigenNet (Luo 1JCAI17), each diagonal block of Fisher matrix F, F;; =
T
[(Sh‘ Sht ®5l 1511 | =1.

From WNN to Post-WNN

51—1

Forward:

WNN:
i1

From WNN to Post-WNN

Forward:

fli W (Od' —[.ld/)

(linear transformation)

= PLR, E [h‘ hi,]

d' -
(truncated whitening)
. h,
Bl = —2
\[Var(hg,)

(batch normalization)
(nonlinear activation)

From WNN to Post-WNN

Forward:

fli W (Od' —[.ld/)

(linear transformation)

= PLR, E [h‘ hi,]

d' -
(truncated whitening)
oL, = hy:
d" — _
Post-whitening the i-th layer smooth \[Var(h!,)
solution space of W'*1, (batch normalization)

(nonlinear activation)

Summary

WNN, GWNN, and EigenNet are NGD.

Deep Learning turns Optimization Problems into
Feed-Forward Network Design.

Batch Normalization (BN)

PART 2

Understand BN

U nderstand BN Activations of single neuron

i h'—E[h']
/Var(hi)

h' = [f1, fo -, ful, M is minibatch size.

BN: Al =y + (%, where

Understand BN

i h'—E[h']
/Var(hi)

h' = [f1, fo -, ful, M is minibatch size.

BN: ht=y + B, where

Understand BN

i h'—E[h']
/Var(hi)

h' = [f1, fo -, ful, M is minibatch size.

BN: ht=y + B, where

Understand BN

i h'—E[h']

T T 5 BN: ht =y + B, where
AT1=0, RTR = MO+ [varcwy
h' ‘ h' o' h'" pit! h' = [f1, fo -, ful, M is minibatch size.

9ni 9, Ipit1 g,i+1
<

gRi+1 yi+1 [Ri+1, 1][Ri*Y, 1]T

]BN ahl+1 T it (I — M

Gpi+1 —] gol+)

Understand BN

h'1=0, R A = M(ViiJ“)

ht Rt of pitl pit1

it
Gpi 9ot Ipit1 g,i+1
<
aﬁi“)/i+1
ghl+1 _] gol+)]BN ahH'l O—i+1

i h'—E[hY]
/Var(hi)

hl — [fl!fZi seey

BN: Al =y + (%, where

fu], M is minibatch size.

i+1
(B = Lo (M - 2),
= f(yi,ﬁi,Wi)_
A+ 1][Ri*1, 1]T
- M

Understand BN

h"1=0, R A = M(ViiJ“)

hi

Rt ol pitl pit+1

Gpi 9ot Ipit1 g,i+1

<
aﬁi“)/i+1

JEN = .
ahl+1 O—l+1

ghl+1 —] g0l+)

(I —

hi-E[h!]
/Var(hi)

hl — [fl!fZi seey

BN: A=y’ + (%, where

ful, M is minibatch size.
FQ+1,i+1)
E[g,i+19,1+1] @ E[0'0"],
o' = max(0, h')

A+ 1][Ri*1, 1]T
M

Understand BN

BN Preserves Forward and Backward Information Flows
Depended ony .

Smooth the (1 + 1)-th ConvLayer.

Regularization in BN

BN: h; = il + [, where h = [hl,hz, ...hj, ...,hM]

1= \/Var(h)

Regularization in BN

BN: h; = il + [, where h = [hl,hz, ...hj, ...,hM]

1= \/Var(h)

BN is an implicit Reqularizer.

Regularization in BN

sample: x/

BN: h; = il + [, where h = [hl,hz, ...hj, ...,hM]

1= \/Var(h)

BN is an implicit Reqularizer.

Regularization in BN

sample: x/

BN: h; = il + [, where h = [hl,hz, ...hj, ...,hM]

1= \/Var(h)

Up = E[h]], Op = \/Var(h])

Regularization in BN
~ h-—u
BN: hj =y ’JBB+,B

N 0‘% N pt2
UB (M?»M)» OB (op, AM)

Regularization in BN

~ _ _hj—usg
BN: h; =y p + b
05 p+ 2

When M — P, Ug = Up and Op— Op.

Regularization in BN

BN = PN + Gamma Decay

Regularization in BN

A h-—u
BN: hj =y~ 4+ B

OB

Population Normalization (PN): h;

Regularization in BN

~ hj—up
B =Y .
BN: hi =y -5 PN

OB

An explicit regularizer:

h.

Regularization in BN

~ hj—ug -
N j | L —
BN: h] =Y o | IB PN: hj =

An explicit regularizer'

P
1
Pz Eyy o [L(RD)] ~ FZ £(7Y) + ¢(hi)y?,

Regularization in BN

BN: fl)/h] o 5 PN: f_Lj =
0B

An explicit regularizer'

1
Pz Epy o [L(RD)] ;z £(7Y) + ¢(hi)y?,

P

N pt2 1 _.

and ((h]l :8—MFV+WF O'(h]l
- . j=1
from op :

Regularization in BN

(R By h]

W) == v *omp 2, oW
- . j=1
from og M

from ug

Regularization in BN

punish gradient norm and prevent reliance on single
correlations. neuron.
12 11x
P _.
h) == B +5575) o).
¢(hy) = 717 2,0)
H—/ . j=1 y
from og

from ug

Regularization in BN

U and 0 in BN have Different Regularization Impacts.

Regularization in BN

train - BN M=64

train - BN M=256

train - PN + adaptive gamma decay
eval - BN M=64

eval - BN M=256

eval - PN + adaptive gamma decay

train-BNM=32
— train- BN M=1024
} —— train-PNadaptive gamma decay
P4 eval- BNM=32
| “==- eval- BNM=1024
—=- eval- PN adaptive gamma decay

h'—.‘-'-ﬁ-b---lﬂ.-‘--ﬂ.-‘ﬁ--l A T B T W e e —

100k 150k 200k
step

CIFAR10 (CNNG) down-sampled ImageNet (R18)

Regularization in BN

train - BN M=64

train - BN M=256

train - PN + adaptive gamma decay
eval - BN M=64

eval - BN M=256

eval - PN + adaptive gamma decay

BN M=256

train-BNM=32
— train- BN M=1024
i\ - train-PNadaptive gamma decay
¥y eval- BNM=32

E

A\ L/ '==- eval- BNM=1024
! . eval- PN adaptive gamma decay

PN

h'—.‘-'-ﬁ-b---lﬂ.-‘--ﬂ.-‘ﬁ--l e T B R W (e —

100k 150k 200k
step

CIFAR10 (CNN®G6) down-sampled ImageNet (R18)

Summary

BN Preserves Forward and Backward Information Flows
Depended ony .

Smooth the (I + 1)-th ConvLayer.

Summary
BN is an implicit Regularizer.
BN = PN + Gamma Decay

U and 0 in BN have Different Regularization Impacts.

BN turns data-dependent Regularizations into
Feed-forward Estimation of Batch Statistics.

Switchable Normalization (SN)

PART 3

Switchable Normalization (SN)

A new Perspective for Deep Learning:
Each ConvLayer in a ConvNet needs its own Normalizer.

Switchable Normalization (SN)

i’\l _ h — ZZE.Q /12/12
>N Zzeﬂ A’ZO-Z

VZ, 2zealz =1, Xzeadz = 1.

., Q = {IN, LN, BN},

Switchable Normalization (SN)

Wiy wlx wlx whe s
Iwel Iwel Y lwel Iwel SN = ABN/IBN

reg. C(h)y? Aivhin + AN

Switchable Normalization (SN)

(8,4) (8,2) (8,1) (1.,8) (1,16) (1,32)

When batch size decreases, LN ratio increases while BN decreases.

Switchable Normalization (SN)

: backbone head
backbone head

57.8
58.4
58.9 38.7

Table 3: Faster R-CNN+FPN using ResNetS0 BT ple 4: Mask R-CNN using ResNet50 and FPN

and FPN with 1x LR schedule. BNT represents BN

N with 2x LR schedule. BN' represents BN is frozen
1s frozen. The best results are bold.

without finetuning. The best results are bold.

Switchable Normalization (SN)

ADE20K Cityscapes
mloUss mloU s mloU.s mloU s
SyncBN
GN
SN

Table 5: Results in ADE20K validation set and C-
ityscapes test set by using ResNetS0 with dilated con-
volutions. ‘ss’ and ‘ms’ indicate single-scale and multi-
scale inference. SyncBN represents mutli-GPU synchro-
nization of BN. SN finetunes from (8, 2) pretrained mod-
el.

Switchable Normalization (SN)

batch=8, length=32 batch=4, length=32
topl top5
90.9 90.0
90.6 90.6
91.3 91.2

Table 6: Results of Kinetics dataset. In training,
the clip length of 32 frames 1s regularly sampled
with a frame interval of 2. We study a batch size
of 8 or 4 clips per GPU. BN is not synchronized
across GPUs. SN finetunes from (8, 2) pretrained
model.

Summary

A Novel Viewpoint for Deep Learning:
Different Normalization Layers in a Deep ConvNet
Require Different Normalizers.

SN would be valuable in “any” problem that needs normalizations, according
to its theoretical property.

Instance-Batch Normalization (IBN-Net)

and Kalman Normalization (KN)
PART 4

1x1 conv, 64
BN, 64
RelLU

v

3x3 conv, 64
BN, 64
RelU

-

1x1 conv, 256
BN, 256

RelLU
-

(a) original

Instance-Batch Normalization

1x1 conv, 64
IN,32 BN, 32

RelLU

'

3x3 conv, 64
BN, 64
RelU

'

1x1 conv, 256
BN, 256

1x1 conv, 64
BN, 64
RelU

v

3x3 conv, 64
BN, 64
RelLU

v

1x1 conv, 256
BN, 256

Instance-Batch Normalization

Table 2. Results of IBN-Net over other CNNs on ImageNet validation set. The perfor-
mance gains are shown in the brackets. More detailed descriptions of these IBN-Nets
are provided in the supplementary material.

original re-implementation [BN-Net-a

Model

topl/top5 err. topl/top5 err. topl /top5 err.

DenseNet121 [1] 24.96/7.85 24.47/7.25 (0.49/0.60)
DenseNet169 [1] 23.6/ 24.02/7.06 23.25/6.51 (0.79/0.55)
ResNet50 [~] 24.7/7.8 24.27/7.08 22.54/6.32 (1.73/0.76)
ResNet101 [=] 23.6/7. 22.48/6.23 21.39/5.59 (1.09/0.64)
ResNeXt101 [31] 21.2/5.6 21.31/5.7 20.88/5.42 (0.43/0.32)
SE-ResNet101 [12] 22.38/6.0 5.88 21.25/5.51 (0.43/0.37)

Instance-Batch Normalization

Table 6. Results on Cityscapes-GTA dataset. Mean IoU for both within domain eval-
uation and cross domain evaluation is reported.

| Train Model mloU(%) Pixel Ace.(%) ‘

| ResNet5() 64.5 93.4
| Cityscapes | IBN-Net50-a 69.1 94.4
IBN-NetbH(0-b 67.0 94.3
ResNet50 29.4 71.9
IBN-Net50-a 32.5 71.4
IBN-Net50-b 37.9 T8.8
ResNet50 61.0 91.5
IBN-Net5(-a 64.8 92.5
IBN-Net50-b 64.2 92.4
ResNet50 3.5
Cityscapes | IBN-Net50-a 60.9
IBN-Net50-b 29.6 66.8

Cityscapes

Kalman Normalization (KN)

* Propagate statistics in BN through the entire CNN by learning a transition

matrix E .
KN is designed for training with micro-batch.

n13d
uonN|OAUOD
uoIIN|OAUOD
uonN|OAUOD
uoIN|OAUOD
Nn13d
uoIN|OAUOD
uoIIN|OAUOD
uoIIN|OAUOD

O
o
=)
<
e
c
=
(@]
S

uoIIN|OAUOD

uoI}N|OAUOD

uoIIN|OAUOD
Nn134

O
o
=)
<
=
c
=,
o
S

Kalman Normalization (KN)

* Propagate statistics in BN through the entire CNN by learning a transition

matrix E .
KN is designed for training with micro-batch.

4 ry ‘&1IL\\\\\ 1 1 ‘&1lL\\\\fzfl\\\\\jgilL\\\\\ ‘

l ut, ,El

1B

A

O
o
=)
<
2
c
=
(@]
S

Nn13d
UuoIIN|OAUOD
UoNN|OAUOD

n13d
uonN|OAUOD
uonN|OAUOD
uonN|OAUOD
uoIN|OAUOD

O
o
=)
<
e
c
=
(@]
S

uoIIN|OAUOD

uoI}N|OAUOD

uoIIN|OAUOD
Nn134

O
o
=)
<
=
c
=,
o
S

Comparisons

ResNet50 BN GN SN KN
296, 32 76.4 77.2
32,4 12.7 75.9

296, 4 - 77.2

Discussions and Future Work
PART 5

Recap of Results

1. Deep Learning turns optimization problem into feed-forward computations,
e.g. WNN, GWNN, and EigenNet are NGD.

Recap of Results

1. Deep Learning turns optimization problem into feed-forward computations,
e.g. WNN, GWNN, and EigenNet are NGD.

2. BN is an implicit regularizer, whose explicit form is “BN = PN + Gamma
Decay”.

« Compute regularization in batch to replace batch statistics in BN.

Recap of Results

1. Deep Learning turns optimization problem into feed-forward computations,
e.g. WNN, GWNN, and EigenNet are NGD.

2. BN is an implicit regularizer, whose explicit form is “BN = PN + Gamma
Decay”.

« Compute regularization in batch to replace batch statistics in BN.

3. New research direction: different normalization layers in a ConvNet use
different normalizers.

« Switchable Normalization (SN) would be applicable in “any” problem because of its

characteristic.

Working Papers

v “Do Normalization Layers in a Deep ConvNet Really Need to be Distinct?”

v’ “Learning Sparse Switchable Normalization via SparsestMax”

 SoftMax — SparseMax — SparsestMax

v Understanding Learning Dynamics and Generalization of SN

* Loss functions, input distributions, over-parameterization

S\

Codebase 72t

switchnorm

https://github.com/switchablenorms

Switchable-Normalization SwitchNorm_Detection SwitchNorm Segmentation

Forked from roytseng-tw/

Code for Switchable Normalization from "Differentiable S switchable Normalization for semantic image

E': r- 'I-.I:I_-t:: - '-.__I :: riv i o Pl r '-I.-.- =l a1 =1 "._1|.-. el o . . i} .
: e code of Switchable Normalization for object

https://anav.org/abs/1806.10775

@ HTML W 408

SSN, SparsestMax, SNv2 SN: Kinetics, MegaFace, GANSs, ...

https://github.com/XingangPan/IBN-Net [l

nstance-Batch Normalization Metworks (ECCV2018)

@ Python W321 Y49

Team Members

Jiamin Ren X|nJ|ang Wang Ruimao Zhang Zhanglln Peng
SenseTime Rqsearch SenseTime Research SenseTime Research SenseTime Research

: i i IR)
Lingyun Wu Xingang Pan Wenqi Shao Guangrun Wang
SenseTime Research CUHK CUHK Sun Yat-sen U

Reference

[1] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, Koray Kavukcuoglu.
“Natural Neural Networks”, NIPS 2015

[2] Sergey loffe, Christian Szegedy. "Batch Normalization: Accelerating Deep Network “\I
Training by Reducing Internal Covariate Shift", ICML 2015 ?ﬂ
[3] Ping Luo. “Learning Deep Architectures via Generalized Whitened Neural EWitﬂhnnl‘m

Networks”, ICML 2017

[4] Ping Luo. “EigenNet. Towards Fast and Structural Learning of Deep Neural
Networks”, IJCAI 2017

[5] Ping Luo, Jiamin Ren, Zhanglin Peng, Ruimao Zhang, Jingyu Li. "Differentiable
Learning-to-Normalize via Switchable Normalization", arXiv:1806.10779, 2018

[6] Ping Luo, Xinjiang Wang, Wenqi Shao, Zhanglin Peng. "Towards Understanding
Regularization in Batch Normalization”, arXiv:1809.00846, 2018

[7] Guangrun Wang, Jiefeng Peng, Ping Luo, Xinjiang Wang, Liang Lin. “Kalman
Normalization: Normalizing the Normalizers across Layers", NIPS 2018

[8] Xingang Pan, Ping Luo, Jianping Shi, Xiaoou Tang. "Two at Once: Enhancing
Learning and Generalization Capacities via IBN-Net", ECCV2018.

Appendix

PART 6

Kalman Normalization (KN)

True value of h':

ht = E'RT + 4, ul~n(0,RYH

transition matrix bias

Kalman Normalization (KN)

True value of ht:
ht = E'RYT + 4t ul~n(0,RYH
I — 1,1 l
zZ=h+v ES

observed value of a mini-batch

Kalman Normalization (KN)

True value of h':
ht=E'R""t +ub, ul~N(0,RH
zt=ht+ !

Estimated mean of h':

ﬁlll_l — [E[hl] — E[Elhl—l 4+ ul]

Kalman Normalization (KN)

True value of h':
ht=E'RT +dl, u'~n(0,RY
zt=ht + v
Estimated mean of h': Estimated variance of h':

al=1 = E[h!Y] = E[E'R"L + u!] SH-1 = Cov(h! — gl-1) = Eisi-1i-1ptT 4 pi

Kalman Normalization (KN)

True value of h':
ht=E'RT +dl, u'~n(0,RY
zt =ht + v
Estimated mean of h': Estimated variance of h':
al=1 = E[h!Y] = E[E'R"L + u!] SH-1 = Cov(h! — gli-1) = Eisi-1i-1ptT 4 pi

alt = pli=1 4 gtz — gli-1 SH=Cov(h! — gt = ZU-1 4 gl (ct - 211
|(1 _ ql)ql(Zl _ ﬁl|l—1)2

estimation of mean _ _
in current layer estimation of mean

in previous layer

Kalman Normalization (KN)

True value of h':
ht=E'RT +dl, u'~n(0,RY
zt =ht + v
Estimated mean of h': Estimated variance of h':
al=1 = E[h!Y] = E[E'R"L + u!] SH-1 = Cov(h! — gli-1) = Eisi-1i-1ptT 4 pi

A NI NI U= L _ Al — $§11-1 Lol _ SII-1
alt = gii=1 4 glzt — ptit=1 X''=Cov(h' — [l) —l Zl :Il_|£1(cz X)
+(1 - ¢")q'(z" = ath
estimation of mean bias between the observed

in current layer mean and intermediate
estimation

Kalman Normalization (KN)

True value of h':
ht=E'RT +dl, u'~n(0,RY
zt =ht + v
Estimated mean of h': Estimated variance of h':
al=1 = E[h!Y] = E[E'R"L + u!] SH-1 = Cov(h! — gli-1) = Eisi-1i-1ptT 4 pi

alt = pli=1 4 gtz — gli-1 SH=Cov(h! — gt = ZU-1 4 gl (ct - 211
|(1 _ ql)ql(Zl _ ﬁl|l—1)2

estimation of mean gain
in current layer

Kalman Normalization (KN)

True value of h':
ht=E'RT + 4l u'~n(0,RY
zt =ht + v
Estimated mean of h': Estimated variance of h':
al=1 = E[h!Y] = E[E'R"L + u!] SH-1 = Cov(h! — gli-1) = Eisi-1i-1ptT 4 pi

alt = pli=1 4 gtz — gli-1 SH=Cov(h! — gt = ZU-1 4 gl (ct — 211
|(1 _ ql)ql(Zl _ ﬁl|l—1)2

observed covariance
matrix

Kalman Normalization (KN)

True value of h':
ht=E'RT 44l u'~n(0,RY
zt =ht + v
Estimated mean of h': Estimated variance of h':
al=1 = E[h!Y] = E[E'R"L + u!] SH-1 = Cov(h! — gli-1) = Elsi-1i-1pth 4 pi

alt = pli=1 4 gtz — gli-1 SH=Cov(h! — gt = ZU-1 4 gl(ct - 211
|(1 _ ql)ql(Zl _ ﬁl|l—1)2

optimized in training

	Towards Understanding Normalization in Deep Learning and its Applications
	Outline	
	Whitened Neural Network (WNN)
	Relations between Network Design and Optimization
	Relations between Network Design and Optimization
	Relations between Network Design and Optimization
	Relations between Network Design and Optimization
	Relations between Network Design and Optimization
	Relations between Network Design and Optimization
	Relations between Network Design and Optimization
	Multilayer Perceptron (MLP)
	Multilayer Perceptron (MLP)
	Multilayer Perceptron (MLP)
	Multilayer Perceptron (MLP)
	Multilayer Perceptron (MLP)
	Multilayer Perceptron (MLP)
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	WNN is NGD
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	Whitened Neural Networks (WNN)
	Whitened Neural Networks (WNN)
	Whitened Neural Networks (WNN)
	Whitened Neural Networks (WNN)
	From WNN to Post-WNN
	From WNN to Post-WNN
	From WNN to Post-WNN
	Summary
	Batch Normalization (BN)
	Understand BN
	Understand BN
	Understand BN
	Understand BN
	Understand BN
	Understand BN
	Understand BN
	Understand BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Regularization in BN
	Summary
	Summary
	Switchable Normalization (SN)
	Switchable Normalization (SN)
	Switchable Normalization (SN)
	Switchable Normalization (SN)
	Switchable Normalization (SN)
	Switchable Normalization (SN)
	Switchable Normalization (SN)
	Switchable Normalization (SN)
	Summary
	Instance-Batch Normalization (IBN-Net) and Kalman Normalization (KN)
	Instance-Batch Normalization
	Instance-Batch Normalization
	Instance-Batch Normalization
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Comparisons
	Discussions and Future Work
	Recap of Results
	Recap of Results
	Recap of Results
	Working Papers
	Codebase
	Team Members
	Reference
	Appendix
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Kalman Normalization (KN)
	Kalman Normalization (KN)

