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Whitened Neural Network (WNN)
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Relations between Network Design and Optimization

pt+1 = 9t — F-17,£(9, f (x; 0))



Relations between Network Design and Optimization

pt+1 = 9t — F-17,£(9, f (x; 0))



Relations between Network Design and Optimization

pt+1 = 9t — F-17,£(9, f (x; 0))



Relations between Network Design and Optimization

Natural Gradient Descent gt+1 — gt _ p—1 5 :
(NGD): 0 0 F~ Vo L(y,f(x;0))



Relations between Network Design and Optimization

Natural Gradient Descent Qt+1 — gt _ p—1 5 :
(NGD): 0 0 F~ Vo L(y,f(x;0))

F: Fisher Information Matrix (FIM)



Relations between Network Design and Optimization

Natural Gradient Descent gt+1 — gt _ p—1 5 :
(NGD): 0 0 F~ Vo L(y,f(x;0))
SGD: F =1 works well.



Relations between Network Design and Optimization

Deep Learning turns Optimization Problems into
Feed-Forward Network Design.
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Multilayer Perceptron (MLP)

Forward: ht = Wiopt1 (linear transformation)

MLP: R ¢!
. h'—E[R']
OMES . (batch normalization)
oi—1 HRE 0! \/Var(h‘)
ol = max(0,a¢p’ + B) (nonlinear activation)

* Natural gradient descent (NGD) with Fisher information matrix (FIM)
F, th_|_1 — th - /‘l,tFt_:lVth.
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WNN iS NGD Covariance of gradients
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A DNN with [ layers. L
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WNN i1s NGD
A DNN with llayers. _
Fi1 Fij
F
= 22
| Fij Fy

lj

vectorization gradient: VW' = oi-1ARLT

F.. = [E[vec(VWi)veC(VWj)T]

= E[(AR' ® 0'"1) (AR ® o/71)]

 Natural gradient with Fisher information matrix (FIM) F is defined as

Wt = W — A F7TTWE.
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WN N iS NG D vectorization gradient: VW' = oi—lAhiT

Kronecker product

A DNN with [ layers. Fij = E[vec(VW! )vec(VW/)']
Fiq Fij = E[(AR' @ 0'71) (AR @ o/71)]
(mixed-product _ mrapi(ARJ\T i—1(,j—-1\T
P = Fys Sroperty) E[Ah (Ah ) X o (0 ) ]
. . T : N
(independence) = E_Ahl(Ah]) | ® E[Ol_l(()]_l) |
| Fij Fy

e Goal:



WNN is NGD

A DNN with [ layers. Fij = E[vec(YW*)vec(VW/)"]
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WNN is NGD

A DNN with [ layers. Fij = E[vec(YW*)vec(VW/)"]
_F11 Fl-j_ = E[(AR' ® 0'"1) (AR ® o/71)]
N i (AR @ (o
~ E[ARi(ART)' ] ® [0 (0/71)']
Ry Fu_ F; = E[Ahi(ARY) ] ® E[oi~(0'"1)']

EigenNet, [JCAIL17 WNN. NIPS15

GWNN, ICML17



WNN is NGD
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Whitened Neural Network (WNN)

whitened layer input

~i—1
hlqbl o' hl('bl min L
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Whitened Neural Network (WNN)

before whitening after whitening

h' fpl min L
wh

i AT
s.t. E[al—lal—l ]=1,

II

WNN smooth solution space while maintains representation capacity.
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Whitened Neural Networks (WNN)

l—l hl d)l Forward : 5i—1 — Pi—l(oi—l . ,Lli_l),E lai—lai—lT] —

(whitening)
Rl yigi-1 _ _
- (linear transformation)
R
Pt = (batch normalization)
\[ Var(h!) (nonlinear activation)

e In WNN (Desjardins etal. NIPS15) and GWNN (Luo ICML17), E[éi‘lai‘lT] =I.

 In EigenNet (Luo 1JCAI17), each diagonal block of Fisher matrix F, F;; =
T
[(Sh‘ Sht ®5l 1511 | =1.



From WNN to Post-WNN

51—1

Forward:

WNN:
i1



From WNN to Post-WNN

Forward:

fli W (Od' —[.ld/ )

(linear transformation)

= PLR, E [h‘ hi, ]

d' -
(truncated whitening)
. h,
Bl = —2
\[Var(hg,)

(batch normalization)
(nonlinear activation)



From WNN to Post-WNN

Forward:

fli W (Od' —[.ld/ )

(linear transformation)

= PLR, E [h‘ hi, ]

d' -
(truncated whitening)
oL, = hy:
d" — _
Post-whitening the i-th layer smooth \[ Var(h!,)
solution space of W'*1, (batch normalization)

(nonlinear activation)



Summary

WNN, GWNN, and EigenNet are NGD.

Deep Learning turns Optimization Problems into
Feed-Forward Network Design.



Batch Normalization (BN)

PART 2



Understand BN
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Understand BN

i h'—E[h']

T T 5 BN: ht =y + B, where
AT1=0, RTR = MO+ [varcwy
h' ‘ h' o' h'" pit! h' = [f1, fo -, ful, M is minibatch size.

9ni 9, Ipit1 g,i+1
<

gRi+1 yi+1 [Ri+1, 1][Ri*Y, 1]T

]BN ahl+1 T it (I — M

Gpi+1 —] gol+ )



Understand BN

h'1=0, R A = M(ViiJ“ )

ht Rt of pitl pit1

it
Gpi 9ot Ipit1 g,i+1
<
aﬁi“ )/i+1
ghl+1 _] gol+ ) ]BN ahH'l O—i+1

i h'—E[hY]
/Var(hi)

hl — [fl!fZi seey

BN: Al =y + (%, where

fu], M is minibatch size.

i+1
(B = Lo (M - 2),
= f(yi,ﬁi,Wi)_
A+ 1][Ri*1, 1]T
- M



Understand BN

h"1=0, R A = M(ViiJ“ )

hi

Rt ol pitl pit+1

Gpi 9ot Ipit1 g,i+1

<
aﬁi“ )/i+1

JEN = .
ahl+1 O—l+1

ghl+1 —] g0l+ )

(I —

hi-E[h!]
/Var(hi)

hl — [fl!fZi seey

BN: A=y’ + (%, where

ful, M is minibatch size.
FQ+1,i+1)
E[g,i+19,1+1] @ E[0'0" ],
o' = max(0, h')

A+ 1][Ri*1, 1]T
M




Understand BN

BN Preserves Forward and Backward Information Flows
Depended ony .

Smooth the (1 + 1)-th ConvLayer.
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Regularization in BN

sample: x/

BN: h; = il + [, where h = [hl,hz, ...hj, ...,hM]

1= \/Var(h)

Up = E[h]], Op = \/Var(h])




Regularization in BN
~ h-—u
BN: hj =y ’JBB+,B

N 0‘% N pt2
UB (M?»M)» OB (op, AM )




Regularization in BN

~ _ _hj—usg
BN: h; =y p + b
05 p+ 2

When M — P, Ug = Up and Op— Op.



Regularization in BN

BN = PN + Gamma Decay



Regularization in BN

A h-—u
BN: hj =y~ 4+ B

OB

Population Normalization (PN): h;




Regularization in BN

~ hj—up
B =Y .
BN: hi =y -5 PN

OB

An explicit regularizer:

h.




Regularization in BN

~ hj—ug -
N j | L —
BN: h] =Y o | IB PN: hj =

An explicit regularizer'

P
1
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Regularization in BN

BN: fl )/h] o 5 PN: f_Lj =
0B

An explicit regularizer'

1
Pz Epy o [L(RD)] ;z £(7Y) + ¢(hi)y?,

P

N pt2 1 _.

and ((h]l :8—MFV+WF O'(h]l
- . j=1
from op :




Regularization in BN

(R By h]

W) == v *omp 2, oW
- . j=1
from og M

from ug



Regularization in BN

punish gradient norm and prevent reliance on single
correlations. neuron.
12 11x
P _.
h) == B +5575 ) o).
¢(hy) = 717 2,0 )
H—/ . j=1 y
from og

from ug



Regularization in BN

U and 0 in BN have Different Regularization Impacts.



Regularization in BN

train - BN M=64

train - BN M=256

train - PN + adaptive gamma decay
eval - BN M=64

eval - BN M=256

eval - PN + adaptive gamma decay

train-BNM=32
— train- BN M=1024
} —— train-PNadaptive gamma decay
P4 eval- BNM=32
| “==- eval- BNM=1024
—=- eval- PN adaptive gamma decay

h'—.‘-'-ﬁ-b---lﬂ.-‘--ﬂ.-‘ﬁ--l A T B T W e e —

100k 150k 200k
step

CIFAR10 (CNNG) down-sampled ImageNet (R18)



Regularization in BN

train - BN M=64

train - BN M=256

train - PN + adaptive gamma decay
eval - BN M=64

eval - BN M=256

eval - PN + adaptive gamma decay

BN M=256

train-BNM=32
— train- BN M=1024
i\ - train-PNadaptive gamma decay
¥y eval- BNM=32

E

A\ L/ '==- eval- BNM=1024
! . eval- PN adaptive gamma decay

PN

h'—.‘-'-ﬁ-b---lﬂ.-‘--ﬂ.-‘ﬁ--l e T B R W (e —

100k 150k 200k
step

CIFAR10 (CNN®G6) down-sampled ImageNet (R18)



Summary

BN Preserves Forward and Backward Information Flows
Depended ony .

Smooth the (I + 1)-th ConvLayer.



Summary
BN is an implicit Regularizer.
BN = PN + Gamma Decay

U and 0 in BN have Different Regularization Impacts.

BN turns data-dependent Regularizations into
Feed-forward Estimation of Batch Statistics.



Switchable Normalization (SN)

PART 3



Switchable Normalization (SN)

A new Perspective for Deep Learning:
Each ConvLayer in a ConvNet needs its own Normalizer.



Switchable Normalization (SN)

i’\l _ h — ZZE.Q /12/12
>N Zzeﬂ A’ZO-Z

VZ, 2zealz =1, Xzeadz = 1.

., Q = {IN, LN, BN},



Switchable Normalization (SN)

Wiy wlx wlx whe s
Iwel Iwel Y lwel Iwel SN = ABN/IBN

reg. C(h)y? Aivhin + AN



Switchable Normalization (SN)

(8,4) (8,2) (8,1) (1.,8) (1,16) (1,32)

When batch size decreases, LN ratio increases while BN decreases.



Switchable Normalization (SN)

: backbone head
backbone head

57.8
58.4
58.9 38.7

Table 3: Faster R-CNN+FPN using ResNetS0 BT ple 4: Mask R-CNN using ResNet50 and FPN

and FPN with 1x LR schedule. BNT represents BN

N with 2x LR schedule. BN' represents BN is frozen
1s frozen. The best results are bold.

without finetuning. The best results are bold.




Switchable Normalization (SN)

ADE20K Cityscapes
mloUss mloU s mloU.s mloU s
SyncBN
GN
SN

Table 5: Results in ADE20K validation set and C-
ityscapes test set by using ResNetS0 with dilated con-
volutions. ‘ss’ and ‘ms’ indicate single-scale and multi-
scale inference. SyncBN represents mutli-GPU synchro-
nization of BN. SN finetunes from (8, 2) pretrained mod-
el.




Switchable Normalization (SN)

batch=8, length=32 batch=4, length=32
topl top5
90.9 90.0
90.6 90.6
91.3 91.2

Table 6: Results of Kinetics dataset. In training,
the clip length of 32 frames 1s regularly sampled
with a frame interval of 2. We study a batch size
of 8 or 4 clips per GPU. BN is not synchronized
across GPUs. SN finetunes from (8, 2) pretrained
model.




Summary

A Novel Viewpoint for Deep Learning:
Different Normalization Layers in a Deep ConvNet
Require Different Normalizers.

SN would be valuable in “any” problem that needs normalizations, according
to its theoretical property.



Instance-Batch Normalization (IBN-Net)

and Kalman Normalization (KN)
PART 4



1x1 conv, 64
BN, 64
RelLU

v

3x3 conv, 64
BN, 64
RelU

-

1x1 conv, 256
BN, 256

RelLU
-

(a) original

Instance-Batch Normalization

1x1 conv, 64
IN,32 BN, 32

RelLU

'

3x3 conv, 64
BN, 64
RelU

'

1x1 conv, 256
BN, 256

1x1 conv, 64
BN, 64
RelU

v

3x3 conv, 64
BN, 64
RelLU

v

1x1 conv, 256
BN, 256




Instance-Batch Normalization

Table 2. Results of IBN-Net over other CNNs on ImageNet validation set. The perfor-
mance gains are shown in the brackets. More detailed descriptions of these IBN-Nets
are provided in the supplementary material.

original re-implementation [BN-Net-a

Model

topl/top5 err. topl/top5 err. topl /top5 err.

DenseNet121 [1] 24.96/7.85 24.47/7.25 (0.49/0.60)
DenseNet169 [ 1] 23.6/ 24.02/7.06 23.25/6.51 (0.79/0.55)
ResNet50 [~] 24.7/7.8 24.27/7.08 22.54/6.32 (1.73/0.76)
ResNet101 [=] 23.6/7. 22.48/6.23 21.39/5.59 (1.09/0.64)
ResNeXt101 [31] 21.2/5.6 21.31/5.7 20.88/5.42 (0.43/0.32)
SE-ResNet101 [12]  22.38/6.0 5.88 21.25/5.51 (0.43/0.37)




Instance-Batch Normalization

Table 6. Results on Cityscapes-GTA dataset. Mean IoU for both within domain eval-
uation and cross domain evaluation is reported.

| Train Model mloU(%) Pixel Ace.(%) ‘

| ResNet5() 64.5 93.4
| Cityscapes | IBN-Net50-a  69.1 94.4
IBN-NetbH(0-b 67.0 94.3
ResNet50 29.4 71.9
IBN-Net50-a 32.5 71.4
IBN-Net50-b 37.9 T8.8
ResNet50 61.0 91.5
IBN-Net5(-a 64.8 92.5
IBN-Net50-b 64.2 92.4
ResNet50 3.5
Cityscapes | IBN-Net50-a 60.9
IBN-Net50-b 29.6 66.8

Cityscapes




Kalman Normalization (KN)

* Propagate statistics in BN through the entire CNN by learning a transition

matrix E .
KN is designed for training with micro-batch.
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Kalman Normalization (KN)

* Propagate statistics in BN through the entire CNN by learning a transition

matrix E .
KN is designed for training with micro-batch.
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Comparisons

ResNet50 BN GN SN KN
296, 32 76.4 77.2
32,4 12.7 75.9

296, 4 - 77.2



Discussions and Future Work
PART 5
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Recap of Results

1. Deep Learning turns optimization problem into feed-forward computations,
e.g. WNN, GWNN, and EigenNet are NGD.

2. BN is an implicit regularizer, whose explicit form is “BN = PN + Gamma
Decay”.

« Compute regularization in batch to replace batch statistics in BN.

3. New research direction: different normalization layers in a ConvNet use
different normalizers.

« Switchable Normalization (SN) would be applicable in “any” problem because of its

characteristic.



Working Papers

v “Do Normalization Layers in a Deep ConvNet Really Need to be Distinct?”

v’ “Learning Sparse Switchable Normalization via SparsestMax”

 SoftMax — SparseMax — SparsestMax

v Understanding Learning Dynamics and Generalization of SN

* Loss functions, input distributions, over-parameterization

S\



Codebase 72t

switchnorm

https://github.com/switchablenorms

Switchable-Normalization SwitchNorm_Detection SwitchNorm Segmentation

Forked from roytseng-tw/

Code for Switchable Normalization from "Differentiable S switchable Normalization for semantic image

_E'_: r- 'I-.I:I_-t:: - '-.__I :: riv i o Pl r '-I.-.- =l a1 =1 "._1|.-. el o . . i} .
: e code of Switchable Normalization for object

https://anav.org/abs/1806.10775

@ HTML W 408

SSN, SparsestMax, SNv2 SN: Kinetics, MegaFace, GANSs, ...

https://github.com/XingangPan/IBN-Net [l

nstance-Batch Normalization Metworks (ECCV2018)

@ Python  W321 Y49
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True value of h':

ht = E'RT + 4, ul~n(0,RYH

transition matrix bias
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observed value of a mini-batch
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Estimated mean of h':

ﬁlll_l — [E[hl] — E[Elhl—l 4+ ul]
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True value of h':
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optimized in training
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