Towards Understanding Normalization in Deep Learning and its Applications

Ping Luo

The Chinese University of Hong Kong (CUHK)

VALSE Webinar, 2018-10-24

Outline

- 1. Whitened Neural Network (WNN) (Desjardins et al. NIPS15)
 - Relations between network design and optimization
 - Post-GWNN (Luo ICML17)
- 2. Batch Normalization (BN)
 - Regularization and Generalization (Luo etal. arXiv:1809.00846)
- 3. Switchable Normalization (SN) (Luo etal. arXiv:1806.10779)
- 4. More Techniques
 - Kalman Normalization (KN) (Wang etal. NIPS18)
 - Instance-Batch Normalization Network (IBN-Net) (Pan etal. ECCV18)
- 5. Discussions and Future Work

PART 1

SGD: F = I works well.

(NGD):

Deep Learning turns Optimization Problems into Feed-Forward Network Design.

Forward: $h^i = W^i o^{i-1}$

(linear transformation)

Forward:
$$h^i = W^i o^{i-1}$$

$$\phi^{i} = \frac{h^{i} - E[h^{i}]}{\sqrt{\operatorname{Var}(h^{i})}}$$

(linear transformation)

(batch normalization)

Forward:
$$h^i = W^i o^{i-1}$$
 (linear transformation)
$$\phi^i = \frac{h^i - \mathrm{E}[h^i]}{\sqrt{\mathrm{Var}(h^i)}}$$
 (batch normalization)
$$o^i = \max(0, \alpha \phi^i + \beta)$$
 (nonlinear activation)

• Natural gradient descent (NGD) with Fisher information matrix (FIM) $F, W_{t+1}^i = W_t^i - \lambda_t F_t^{-1} \nabla W_t^i$.

A DNN with *l* layers.

$$F=egin{bmatrix} F_{11} & F_{ij} \ & F_{22} \ & \ddots \ & F_{ll} \ \end{bmatrix}$$

A DNN with *l* layers.

$$F = egin{bmatrix} F_{11} & F_{ij} \ \hline F_{22} & \hline F_{ij} \ \hline F_{ij} & F_{ll} \end{bmatrix} \iff ext{Design network whose } F pprox I$$

Covariance of gradients

A DNN with *l* layers.

$$F=egin{bmatrix} F_{11} & F_{ij} \ F_{22} & \ddots \ F_{li} \ \end{bmatrix}$$

 $F_{ij} = \mathbb{E}[\operatorname{vec}(\nabla W^i)\operatorname{vec}(\nabla W^j)^T]$

A DNN with *l* layers.

$$F=egin{bmatrix} F_{11} & F_{ij} \ F_{22} & \ddots \ F_{ij} & F_{ll} \ \end{bmatrix}$$

vectorization gradient: $\nabla W^i = o^{i-1} \Delta h^{iT}$ $F_{ij} = \mathbb{E}[\text{vec}(\nabla W^i) \text{vec}(\nabla W^j)^T]$

A DNN with *l* layers.

$$F=egin{bmatrix} F_{11} & F_{ij} \ & F_{22} \ & \ddots & F_{ll} \ \end{bmatrix}$$

vectorization gradient: $\nabla W^i = o^{i-1} \Delta h^{iT}$ $F_{ij} = \mathbb{E}[\text{vec}(\nabla W^i) \text{vec}(\nabla W^j)^T]$ $= \mathbb{E}[(\Delta h^i \otimes o^{i-1})(\Delta h^j \otimes o^{j-1})]$

A DNN with *l* layers.

$$F= egin{bmatrix} F_{11} & F_{ij} \ F_{22} & \ddots \ F_{ij} & F_{ll} \ \end{bmatrix}$$

A DNN with *l* layers.

$$F= egin{bmatrix} F_{11} & F_{ij} \ F_{22} & \ddots \ F_{ij} & F_{ll} \end{bmatrix}$$

A DNN with *l* layers.

$$F=egin{bmatrix} F_{11} & F_{ij} \ F_{22} & \ddots \ F_{ij} & F_{ll} \end{bmatrix}$$

A DNN with *l* layers.

$$F= egin{bmatrix} F_{11} & F_{ij} \ F_{22} & \ddots \ F_{ij} & F_{ll} \end{bmatrix}$$

A DNN with *l* layers.

$$F=egin{bmatrix} F_{11} & F_{ij} \ F_{22} & & \ F_{ij} & F_{ll} \end{bmatrix}$$

• Goal: $F_{ii} \approx I$.

$$F_{ij} = \mathbb{E}[\text{vec}(\nabla W^{i})\text{vec}(\nabla W^{j})^{T}]$$

$$= \mathbb{E}[(\Delta h^{i} \otimes o^{i-1})(\Delta h^{j} \otimes o^{j-1})]$$

$$= \mathbb{E}[\Delta h^{i}(\Delta h^{j})^{T} \otimes o^{i-1}(o^{j-1})^{T}]$$

$$\approx \mathbb{E}[\Delta h^{i}(\Delta h^{j})^{T}] \otimes \mathbb{E}[o^{i-1}(o^{j-1})^{T}]$$

$$F_{ii} = \mathbb{E}[\Delta h^{i}(\Delta h^{i})^{T}] \otimes \mathbb{E}[o^{i-1}(o^{i-1})^{T}]$$

$$F_{ij} = \mathbb{E}[\operatorname{vec}(\nabla W^i)\operatorname{vec}(\nabla W^j)^T]$$

$$= \mathbb{E}[(\Delta h^i \otimes o^{i-1})(\Delta h^j \otimes o^{j-1})]$$

$$= \mathbb{E}[\Delta h^i(\Delta h^j)^T \otimes o^{i-1}(o^{j-1})^T]$$

$$\approx \mathbb{E}[\Delta h^i(\Delta h^j)^T] \otimes \mathbb{E}[o^{i-1}(o^{j-1})^T]$$

$$F_{ii} = \mathbb{E}[\Delta h^i(\Delta h^i)^T] \otimes \mathbb{E}[o^{i-1}(o^{i-1})^T]$$
EigenNet, IJCAI17

WNN, NIPS15
GWNN, ICML17

• Approximate $F_{ii} = \mathbb{E}[\Delta h^i (\Delta h^i)^T] \otimes \mathbb{E}[o^{i-1} (o^{i-1})^T] \approx I$.

 $\min_{\{W^i\}} L$

WNN smooth solution space while maintains representation capacity.

Forward:
$$\tilde{o}^{i-1} = P^{i-1}(o^{i-1} - \mu^{i-1}), \mathbb{E}\left[\tilde{o}^{i-1}\tilde{o}^{i-1}^T\right] = I$$
 (whitening)

Whitened Neural Networks (WNN)

Forward:
$$\tilde{o}^{i-1} = P^{i-1} (o^{i-1} - \mu^{i-1}), \mathbb{E} \left[\tilde{o}^{i-1} \tilde{o}^{i-1}^T \right] = I$$
 (whitening)

$$h^i = W^i o^{i-1}$$
 (linear transformation) $\phi^i = \frac{\tilde{h}^i}{\sqrt{1 - \tilde{h}^i}}$ (batch normalization)

(nonlinear activation)

Whitened Neural Networks (WNN)

Forward:
$$\tilde{o}^{i-1} = P^{i-1}(o^{i-1} - \mu^{i-1}), \operatorname{E}\left[\tilde{o}^{i-1}\tilde{o}^{i-1}^T\right] = I$$
 (whitening)
$$\tilde{h}^i = W^i \tilde{o}^{i-1} \qquad \text{(linear transformation)}$$
 $\phi^i = \frac{\tilde{h}^i}{\operatorname{Var}(\tilde{h}^i)} \qquad \text{(batch normalization)}$

- In WNN (Desjardins etal. NIPS15) and GWNN (Luo ICML17), $E\left|\tilde{o}^{i-1}\tilde{o}^{i-1}\right|=I$.
- In EigenNet (Luo IJCAI17), each diagonal block of Fisher matrix F, $F_{ii} = E[\delta \tilde{h}^i \delta \tilde{h}^i]^T \otimes \tilde{o}^{i-1} \tilde{o}^{i-1}] \approx I$.

From WNN to Post-WNN

Forward:

From WNN to Post-WNN

Forward:

$$\tilde{h}^i = W^i(o_{d'}^{i-1} - \mu_{d'}^{i-1})$$
 (linear transformation)

$$h_{d'}^{i} = P_{d'}^{i} \tilde{h}^{i}$$
, $\operatorname{E}\left[h_{d'}^{i} h_{d'}^{i}^{T}\right] = I$ (truncated whitening)

$$\phi_{d'}^i = \frac{h_{d'}^i}{\sqrt{\operatorname{Var}(h_{d'}^i)}}$$

(batch normalization)

(nonlinear activation)

From WNN to Post-WNN

Post-whitening the i-th layer smooth solution space of W^{i+1} .

Forward:

$$\tilde{h}^i = W^i(o_{d'}^{i-1} - \mu_{d'}^{i-1})$$
 (linear transformation)

$$h_{d'}^i = P_{d'}^i \tilde{h}^i, \qquad \mathrm{E}\left[h_{d'}^i h_{d'}^{i}^T\right] = I$$
 (truncated whitening)

$$\phi_{d'}^i = \frac{h_{d'}^i}{\sqrt{\operatorname{Var}(h_{d'}^i)}}$$

(batch normalization)

(nonlinear activation)

Summary

WNN, GWNN, and EigenNet are NGD.

Deep Learning turns Optimization Problems into Feed-Forward Network Design.

Batch Normalization (BN)

PART 2

Activations of single neuron

BN:
$$\hat{h}^i = \gamma^i \frac{h^i - \mathbb{E}[h^i]}{\sqrt{\text{Var}(h^i)}} + \beta^i$$
, where

 $h^i = [f_1, f_2, ..., f_M], M$ is minibatch size.

$$\hat{h}^{i} = 0, \hat{h}^{i} \hat{h}^{i} = M(\gamma^{i}^{2} + \beta^{i}^{2})$$

$$h^{i} \hat{h}^{i} \quad o^{i} \quad h^{i+1} \hat{h}^{i+1}$$

$$o^{i-1} \quad W^{i} \quad \mu^{i}, \sigma^{i} = W^{i+1} \quad \mu^{i+1} = 0$$

$$BN \quad BN \quad BN$$

BN:
$$\hat{h}^i = \gamma^i \frac{h^i - \mathbb{E}[h^i]}{\sqrt{\text{Var}(h^i)}} + \beta^i$$
, where

$$h^i = [f_1, f_2, ..., f_M], M$$
 is minibatch size.

BN:
$$\hat{h}^i = \gamma^i \frac{h^i - \mathbb{E}[h^i]}{\sqrt{\text{Var}(h^i)}} + \beta^i$$
, where

 $h^i = [f_1, f_2, ..., f_M], M$ is minibatch size.

$$\hat{h}^{i} = 0, \ \hat{h}^{i} \hat{h}^{i} = M(\gamma^{i^{2}} + \beta^{i^{2}})$$

$$h^{i} \quad \hat{h}^{i} \quad o^{i} \quad h^{i+1} \quad \hat{h}^{i+1}$$

$$u^{i+1} \quad u^{i+1} \quad v^{i+1} \quad v$$

BN:
$$\hat{h}^i = \gamma^i \frac{h^i - \mathbb{E}[h^i]}{\sqrt{\text{Var}(h^i)}} + \beta^i$$
, where

$$h^i = [f_1, f_2, ..., f_M], M$$
 is minibatch size.

$$g_{h^{i+1}} = J^{BN}g_{o^{i+1}}, \quad J^{BN} = \frac{\partial \hat{h}^{i+1}}{\partial h^{i+1}} = \frac{\gamma^{i+1}}{\sigma^{i+1}}(I - \frac{\left[\tilde{h}^{i+1}, \mathbf{1}\right]\left[\tilde{h}^{i+1}, \mathbf{1}\right]^T}{M})$$

$$\hat{h}^{iT} \mathbf{1} = 0, \ \hat{h}^{iT} \hat{h}^{i} = M(\gamma^{i^{2}} + \beta^{i^{2}})$$

$$h^{i} \quad \hat{h}^{i} \quad o^{i} \quad h^{i+1} \quad \hat{h}^{i+1}$$

$$h^{i} \quad \hat{h}^{i} \quad o^{i} \quad h^{i+1} \quad \hat{h}^{i+1}$$

$$g_{h^{i}} \quad g_{o^{i}} \quad g_{h^{i+1}} \quad g_{o^{i+1}}$$

$$g_{h^{i}} \quad g_{o^{i}} \quad g_{h^{i+1}} \quad g_{o^{i+1}}$$

BN:
$$\hat{h}^i = \gamma^i \frac{h^i - \mathbb{E}[h^i]}{\sqrt{\text{Var}(h^i)}} + \beta^i$$
, where

 $h^i = [f_1, f_2, ..., f_M], M$ is minibatch size.

$$\operatorname{tr}(J^{BN}) = \frac{\gamma^{i+1}}{\sigma^{i+1}} (M-2),$$
$$\sigma^{i+1} = f(\gamma^i, \beta^i, W^i).$$

$$g_{h^{i+1}} = J^{BN}g_{o^{i+1}}, \quad J^{BN} = \frac{\partial \hat{h}^{i+1}}{\partial h^{i+1}} = \frac{\gamma^{i+1}}{\sigma^{i+1}}(I - \frac{\left[\tilde{h}^{i+1}, \mathbf{1}\right]\left[\tilde{h}^{i+1}, \mathbf{1}\right]^T}{M})$$

$$\hat{h}^{i} = 0, \quad \hat{h}^{i} \hat{h}^{i} = M(\gamma^{i}^{2} + \beta^{i}^{2})$$

$$h^{i} \quad \hat{h}^{i} \quad o^{i} \quad h^{i+1} \quad \hat{h}^{i+1}$$

$$h^{i} = [f_{1}, f_{2}, ..., f_{n}]$$

$$h^{i} \quad \hat{h}^{i} \quad o^{i} \quad h^{i+1} \quad \hat{h}^{i+1}$$

$$h^{i} = [f_{1}, f_{2}, ..., f_{n}]$$

$$F(i+1,i+1) = E[g_{h^{i+1}}]$$

$$g_{h^{i}} \quad g_{o^{i}} \quad g_{h^{i+1}} \quad g_{o^{i+1}}$$

$$o^{i} = ma$$

BN:
$$\hat{h}^i = \gamma^i \frac{h^i - \mathbb{E}[h^i]}{\sqrt{\text{Var}(h^i)}} + \beta^i$$
, where

$$h^i = [f_1, f_2, ..., f_M], M$$
 is minibatch size.

$$F^{(i+1,i+1)} =$$

$$\mathbb{E}[g_{h^{i+1}}g_{h^{i+1}}^T] \otimes \mathbb{E}[o^i o^{i^T}],$$

$$o^i = \max(0, \hat{h}^i)$$

$$g_{h^{i+1}} = J^{BN}g_{o^{i+1}}, \quad J^{BN} = \frac{\partial \hat{h}^{i+1}}{\partial h^{i+1}} = \frac{\gamma^{i+1}}{\sigma^{i+1}}(I - \frac{\left[\tilde{h}^{i+1}, \mathbf{1}\right]\left[\tilde{h}^{i+1}, \mathbf{1}\right]^T}{M})$$

BN Preserves Forward and Backward Information Flows
Depended on \gamma.

Forward of i-th BN and Backward of (i+1)-th BN Smooth the (i+1)-th ConvLayer.

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mathbb{E}[h]}{\sqrt{\mathrm{Var}(h)}} + \beta$$
, where $\boldsymbol{h} = \left[h_1, h_2, \dots h_j, \dots, h_M\right]$

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mathbb{E}[h]}{\sqrt{\mathrm{Var}(h)}} + \beta$$
, where $\boldsymbol{h} = \begin{bmatrix} h_1, h_2, \dots h_j, \dots, h_M \end{bmatrix}$

BN is an implicit Regularizer.

$$\text{sample: } x^j$$

$$\text{BN: } \hat{h}_j = \gamma \frac{h_j - \mathbb{E}[h]}{\sqrt{\mathrm{Var}(h)}} + \beta \text{, where } \boldsymbol{h} = \left[h_1, h_2, \dots h_j, \dots, h_M\right]$$

BN is an implicit Regularizer.

$$\text{sample: } \boldsymbol{x}^j$$

$$\downarrow$$

$$\text{BN: } \hat{h}_j = \gamma \frac{h_j - \mathbb{E}[h]}{\sqrt{\mathrm{Var}(h)}} + \beta, \text{ where } \boldsymbol{h} = \left[h_1, h_2, \dots h_j, \dots, h_M\right]$$

$$\mu_{\mathcal{B}} = \mathbb{E}[h_j], \ \sigma_{\mathcal{B}} = \sqrt{\mathrm{Var}(h_j)}$$

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} + \beta$$

$$\mu_{\mathcal{B}} \backsim \mathcal{N}(\mu_{\mathcal{P}}, \frac{\sigma_{\mathcal{P}}^2}{M}), \ \sigma_{\mathcal{B}} \backsim \mathcal{N}(\sigma_{\mathcal{P}}, \frac{\rho+2}{4M})$$

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mu_B}{\sigma_B} + \beta$$

$$\mu_{\mathcal{B}} \backsim \mathcal{N}(\mu_{\mathcal{P}}, \frac{\sigma_{\mathcal{P}}^2}{M}), \ \sigma_{\mathcal{B}} \backsim \mathcal{N}(\sigma_{\mathcal{P}}, \frac{\rho+2}{4M})$$

When $M \to P$, $\mu_{\mathcal{B}} \to \mu_{\mathcal{P}}$ and $\sigma_{\mathcal{B}} \to \sigma_{\mathcal{P}}$.

$$\mathcal{BN} \approx \mathcal{PN} + Gamma\ Decay$$

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} + \beta$$

Population Normalization (PN):
$$\bar{h}_j = \gamma \frac{h_j - \mu_{\mathcal{P}}}{\sigma_{\mathcal{P}}} + \beta$$

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} + \beta$$
 PN: $\bar{h}_j = \gamma \frac{h_j - \mu_{\mathcal{P}}}{\sigma_{\mathcal{P}}} + \beta$

An explicit regularizer:

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} + \beta$$
 PN: $\bar{h}_j = \gamma \frac{h_j - \mu_{\mathcal{P}}}{\sigma_{\mathcal{P}}} + \beta$

An explicit regularizer:

$$\frac{1}{P} \sum_{j=1}^{P} \mathbb{E}_{\mu_{\mathcal{B}}, \sigma_{\mathcal{B}}} [\mathcal{L}(\hat{h}_{j}^{i})] \approx \frac{1}{P} \sum_{j=1}^{P} \mathcal{L}(\bar{h}_{j}^{i}) + \zeta(h_{j}^{i}) \gamma^{2},$$
and
$$\zeta(h_{j}^{i}) = \frac{\rho + 2}{8M} F_{\gamma} + \frac{1}{2M} \frac{1}{P} \sum_{i=1}^{P} \sigma(\bar{h}_{j}^{i}).$$

BN:
$$\hat{h}_j = \gamma \frac{h_j - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} + \beta$$
 PN: $\bar{h}_j = \gamma \frac{h_j - \mu_{\mathcal{P}}}{\sigma_{\mathcal{P}}} + \beta$

An explicit regularizer:

$$\frac{1}{P} \sum_{j=1}^{P} \mathbb{E}_{\mu_{\mathcal{B}}, \sigma_{\mathcal{B}}} [\mathcal{L}(\hat{h}_{j}^{i})] \approx \frac{1}{P} \sum_{j=1}^{P} \mathcal{L}(\bar{h}_{j}^{i}) + \zeta(h_{j}^{i}) \gamma^{2},$$
and
$$\zeta(h_{j}^{i}) = \frac{\rho + 2}{8M} F_{\gamma} + \frac{1}{2M} \frac{1}{P} \sum_{j=1}^{P} \sigma(\bar{h}_{j}^{i}).$$
from $\sigma_{\mathcal{B}}$ from $\mu_{\mathcal{B}}$

$$\zeta(h_j^i) = \frac{\rho + 2}{8M} F_{\gamma} + \frac{1}{2M} \frac{1}{P} \sum_{j=1}^{P} \sigma(\bar{h}_j^i).$$
from $\sigma_{\mathcal{B}}$ from $\mu_{\mathcal{B}}$

punish gradient norm and correlations.

prevent reliance on single neuron.

$$\zeta(h_j^i) = \frac{\rho + 2}{8M} F_{\gamma} + \frac{1}{2M} \frac{1}{P} \sum_{j=1}^{P} \sigma(\bar{h}_j^i).$$
from $\sigma_{\mathcal{B}}$ from $\mu_{\mathcal{B}}$

 μ and σ in BN have Different Regularization Impacts.

down-sampled ImageNet (R18) sook

down-sampled ImageNet (R18) sook

Summary

BN Preserves Forward and Backward Information Flows
Depended on γ .

Forward of i-th BN and Backward of (i+1)-th BN Smooth the (i+1)-th ConvLayer.

Summary

BN is an implicit Regularizer.

 $BN \approx PN + Gamma Decay$

 μ and σ in BN have Different Regularization Impacts.

BN turns data-dependent Regularizations into Feed-forward Estimation of Batch Statistics.

Switchable Normalization (SN)

PART 3

Switchable Normalization (SN)

A new Perspective for Deep Learning: Each ConvLayer in a ConvNet needs its own Normalizer.

Switchable Normalization (SN)

$$\hat{h}_{SN} = \frac{h - \sum_{z \in \Omega} \lambda_z \mu_z}{\sum_{z \in \Omega} \lambda_z' \sigma_z}, \quad \Omega = \{IN, LN, BN\},$$

$$\forall z, \ \sum_{z \in \Omega} \lambda_z = 1, \ \sum_{z \in \Omega} \lambda_z' = 1.$$

When batch size decreases, LN ratio increases while BN decreases.

backbone head	AP	AP.5	AP.75	AP_l	AP_m	AP_s
BN [†] –	36.7	58.4	39.6	48.1	39.8	21.1
BN [†] GN	37.2	58.0	40.4	48.6	40.3	21.6
BN [†] SN	38.0	59.4	41.5	48.9	41.3	22.7
GN GN	38.2	58.7	41.3	49.6	41.0	22.4
SN SN	39.3	60.9	42.8	50.3	42.7	23.5

Table 3: **Faster R-CNN+FPN** using ResNet50 and FPN with 1x LR schedule. BN[†] represents BN is frozen. The best results are bold.

and FPN with 1x LR schedule. BN[†] represents BN is frozen. The best results are bold.

backbon	e head	AP^{b}	$AP_{.5}^{b}$	$AP_{.75}^{\mathrm{b}}$	AP^{m}	$AP_{.5}^{m}$	AP ^m _{.75}
BN^{\dagger}	-	38.6	59.5	41.9	34.2	56.2	36.1
BN^\dagger	GN	39.5	60.0	43.2	34.4	56.4	36.3
BN^\dagger	SN	40.0	61.0	43.3	34.8	57.3	36.3
GN	GN	40.2	60.9	43.8	35.7	57.8	38.0
GN	SN	40.4	61.4	44.2	36.0	58.4	38.1
SN	SN	41.0	62.3	45.1	36.5	58.9	38.7

Table 4: Mask R-CNN using ResNet50 and FPN with 2x LR schedule. BN[†] represents BN is frozen without finetuning. The best results are bold.

with 2x LR schedule. BN[†] represents BN is frozen without finetuning. The best results are bold.

	ADE20K		Cityscapes	
	$mIoU_{ss}$	${ m mIoU_{ms}}$	$mIoU_{ss}$	${ m mIoU_{ms}}$
SyncBN	36.4	37.7	69.7	73.0
GN	35.7	36.3	68.4	73.1
SN	38.7	39.2	71.2	75.1

Table 5: Results in ADE20K validation set and C-ityscapes test set by using ResNet50 with dilated convolutions. 'ss' and 'ms' indicate single-scale and multiscale inference. SyncBN represents mutli-GPU synchronization of BN. SN finetunes from (8, 2) pretrained model.

scale inference. SyncBN represents mutli-GPU synchronization of BN. SN finetunes from (8, 2) pretrained model.

	batch=8, length=32		batch=4,	length=32
	top1	top5	top1	top5
BN	73.2	90.9	72.1	90.0
GN	73.0	90.6	72.8	90.6
SN	73.5	91.3	73.3	91.2

Table 6: **Results of Kinetics dataset.** In training, the clip length of 32 frames is regularly sampled with a frame interval of 2. We study a batch size of 8 or 4 clips per GPU. BN is not synchronized across GPUs. SN finetunes from (8, 2) pretrained model.

of 8 or 4 clips per GPU. BN is not synchronized across GPUs. SN finetunes from (8,2) pretrained model.

Summary

A Novel Viewpoint for Deep Learning: Different Normalization Layers in a Deep ConvNet Require Different Normalizers.

SN would be valuable in "any" problem that needs normalizations, according to its theoretical property.

Instance-Batch Normalization (IBN-Net) and Kalman Normalization (KN)

PART 4

Instance-Batch Normalization

Instance-Batch Normalization

Table 2. Results of IBN-Net over other CNNs on ImageNet validation set. The performance gains are shown in the brackets. More detailed descriptions of these IBN-Nets are provided in the supplementary material.

Model	original	re-implementation	IBN-Net-a
Model	top1/top5 err.	top1/top5 err.	top1/top5 err.
DenseNet121 [13]	25.0/-	24.96/7.85	24.47/7.25 (0.49/0.60)
DenseNet169 [13]	23.6/-	24.02/7.06	23.25/6.51 (0.79/0.55)
ResNet50 [8]	24.7/7.8	24.27/7.08	22.54/6.32 (1.73/0.76)
ResNet101 [8]	23.6/7.1	22.48/6.23	21.39/5.59 (1.09/0.64)
ResNeXt101 [31]	21.2/5.6	21.31/5.74	20.88/5.42 (0.43/0.32)
SE-ResNet101 [12]	22.38/6.07	21.68/5.88	21.25/5.51 (0.43/0.37)

SE-ResNet101 [12]	22.38/6.07	21.68/5.88	21.25/5.51 (0.43/0.37)
ResNeXt101 [31]	21.2/5.6	21.31/5.74	20.88/5.42 (0.43/0.32)

Instance-Batch Normalization

Table 6. Results on Cityscapes-GTA dataset. Mean IoU for both within domain evaluation and cross domain evaluation is reported.

Train	Test	Model	mIoU(%)	Pixel Acc.(%)
		ResNet50	64.5	93.4
	Cityscapes	IBN-Net50-a	69.1	94.4
Cityggang		IBN-Net50-b	67.0	94.3
Cityscapes		ResNet50	29.4	71.9
	GTA5	IBN-Net50-a	32.5	71.4
		IBN-Net50-b	37.9	78.8
		ResNet50	61.0	91.5
	GTA5	IBN-Net50-a	64.8	92.5
GTA5		IBN-Net50-b	64.2	92.4
GIAS		ResNet50	22.2	53.5
	Cityscapes	IBN-Net50-a	26.0	60.9
		IBN-Net50-b	29.6	66.8

	Cityscapes	IBN-Net50-a IBN-Net50-b	26.0 29.6	60.9 66.8
GTA5	ResNet50			

- Propagate statistics in BN through the entire CNN by learning a transition matrix E.
- KN is designed for training with micro-batch.

- Propagate statistics in BN through the entire CNN by learning a transition matrix E.
- KN is designed for training with micro-batch.

Comparisons

ResNet50	BN	GN	SN	KN
256, 32	76.4	75.9	77.2	76.8
32, 4	72.7	75.8	75.9	-
256, 4	-	-	77.2	76.1

Discussions and Future Work

PART 5

Recap of Results

 Deep Learning turns optimization problem into feed-forward computations, e.g. WNN, GWNN, and EigenNet are NGD.

Recap of Results

- Deep Learning turns optimization problem into feed-forward computations,
 e.g. WNN, GWNN, and EigenNet are NGD.
- BN is an implicit regularizer, whose explicit form is "BN ≈ PN + Gamma
 Decay".
 - Compute regularization in batch to replace batch statistics in BN.

Recap of Results

- Deep Learning turns optimization problem into feed-forward computations, e.g. WNN, GWNN, and EigenNet are NGD.
- BN is an implicit regularizer, whose explicit form is "BN ≈ PN + Gamma Decay".
 - Compute regularization in batch to replace batch statistics in BN.
- 3. New research direction: different normalization layers in a ConvNet use different normalizers.
 - Switchable Normalization (SN) would be applicable in "any" problem because of its characteristic.

Working Papers

- ✓ "Do Normalization Layers in a Deep ConvNet Really Need to be Distinct?"
- ✓ "Learning Sparse Switchable Normalization via SparsestMax"
 - SoftMax → SparseMax → SparsestMax
- ✓ Understanding Learning Dynamics and Generalization of SN
 - Loss functions, input distributions, over-parameterization
- ✓ SNv2

Codebase

https://github.com/switchablenorms

Switchable-Normalization

Code for Switchable Normalization from "Differentiable Learning-to-Normalize via Switchable Normalization", https://arxiv.org/abs/1806.10779

■ HTML

SwitchNorm Detection

Forked from roytseng-tw/Detectron.pytorch

The code of Switchable Normalization for object detection based on Detectron.pytorch.

SwitchNorm Segmentation

Switchable Normalization for semantic image and scene parsing.

Python

SSN, SparsestMax, SNv2

SN: Kinetics, MegaFace, GANs, ...

https://github.com/XingangPan/IBN-Net

IBN-Net

Instance-Batch Normalization Networks (ECCV2018)

Python

Team Members

Jiamin Ren

Xinjiang Wang SenseTime Research SenseTime Research

Ruimao Zhang SenseTime Research

Zhanglin Peng SenseTime Research

Lingyun Wu SenseTime Research

Xingang Pan CUHK

Wenqi Shao CUHK

Guangrun Wang Sun Yat-sen U

Reference

- [1] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, Koray Kavukcuoglu. "Natural Neural Networks", NIPS 2015
- [2] Sergey loffe, Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", ICML 2015
- [3] **Ping Luo**. "Learning Deep Architectures via Generalized Whitened Neural Networks", ICML 2017
- [4] **Ping Luo**. "EigenNet: Towards Fast and Structural Learning of Deep Neural Networks", IJCAI 2017
- [5] **Ping Luo**, Jiamin Ren, Zhanglin Peng, Ruimao Zhang, Jingyu Li. "Differentiable Learning-to-Normalize via Switchable Normalization", arXiv:1806.10779, 2018
- [6] **Ping Luo**, Xinjiang Wang, Wenqi Shao, Zhanglin Peng. "Towards Understanding Regularization in Batch Normalization", arXiv:1809.00846, 2018
- [7] Guangrun Wang, Jiefeng Peng, **Ping Luo**, Xinjiang Wang, Liang Lin. "Kalman Normalization: Normalizing the Normalizers across Layers", NIPS 2018
- [8] Xingang Pan, **Ping Luo**, Jianping Shi, Xiaoou Tang. "Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net", ECCV2018.

Appendix

PART 6

True value of h^l :

$$h^l = E^l h^{l-1} + u^l, \quad u^l \sim \mathcal{N}(0, R^l)$$
 transition matrix bias

True value of h^l :

$$h^l = E^l h^{l-1} + u^l, \quad u^l \sim \mathcal{N}(0, R^l)$$

$$z^l = h^l + v^l \qquad \text{bias}$$

observed value of a mini-batch

True value of h^l :

$$h^{l} = E^{l}h^{l-1} + u^{l}, \quad u^{l} \sim \mathcal{N}(0, R^{l})$$
$$z^{l} = h^{l} + v^{l}$$

Estimated mean of h^l :

$$\widehat{\mu}^{l|l-1} = \mathbb{E}[h^l] = \mathbb{E}[E^l h^{l-1} + u^l]$$

True value of h^l :

$$h^{l} = E^{l}h^{l-1} + u^{l}, \quad u^{l} \sim \mathcal{N}(0, R^{l})$$
$$z^{l} = h^{l} + v^{l}$$

Estimated mean of h^l :

Estimated variance of h^l :

$$\hat{\mu}^{l|l-1} = \mathbb{E}[h^l] = \mathbb{E}[E^l h^{l-1} + u^l] \qquad \hat{\Sigma}^{l|l-1} = \text{Cov}(h^l - \hat{\mu}^{l|l-1}) = E^l \hat{\Sigma}^{l-1|l-1} E^{l^T} + R^l$$

True value of h^l :

$$h^{l} = E^{l}h^{l-1} + u^{l}, \quad u^{l} \sim \mathcal{N}(0, R^{l})$$
$$z^{l} = h^{l} + v^{l}$$

Estimated mean of h^l :

$$\hat{\mu}^{l|l-1} = \mathbb{E}[h^l] = \mathbb{E}[E^l h^{l-1} + u^l]$$

$$\hat{\mu}^{l|l} = \hat{\mu}^{l|l-1} + q^l(z^l - \hat{\mu}^{l|l-1})$$
 estimation of mean in current layer estimation of mean in previous layer

Estimated variance of h^l :

$$\hat{\Sigma}^{l|l-1} = \text{Cov}(h^l - \hat{\mu}^{l|l-1}) = E^l \hat{\Sigma}^{l-1|l-1} E^{lT} + R^l$$

$$\hat{\Sigma}^{l|l} = \text{Cov}(h^l - \hat{\mu}^{l|l}) = \hat{\Sigma}^{l|l-1} + q^l (C^l - \hat{\Sigma}^{l|l-1}) + (1 - q^l)q^l (z^l - \hat{\mu}^{l|l-1})^2$$

True value of h^l :

$$h^{l} = E^{l}h^{l-1} + u^{l}, \quad u^{l} \sim \mathcal{N}(0, R^{l})$$
$$z^{l} = h^{l} + v^{l}$$

Estimated mean of h^l :

Estimated variance of h^l :

$$\hat{\mu}^{l|l-1} = \mathbb{E}[h^{l}] = \mathbb{E}[E^{l}h^{l-1} + u^{l}] \qquad \hat{\Sigma}^{l|l-1} = \text{Cov}(h^{l} - \hat{\mu}^{l|l-1}) = E^{l}\hat{\Sigma}^{l-1|l-1}E^{l^{T}} + R^{l}$$

$$\hat{\mu}^{l|l} = \hat{\mu}^{l|l-1} + q^{l}(z^{l} - \hat{\mu}^{l|l-1}) \qquad \hat{\Sigma}^{l|l} = \text{Cov}(h^{l} - \hat{\mu}^{l|l}) = \hat{\Sigma}^{l|l-1} + q^{l}(C^{l} - \hat{\Sigma}^{l|l-1}) + (1 - q^{l})q^{l}(z^{l} - \hat{\mu}^{l|l-1})^{2}$$

estimation of mean in current layer

bias between the observed mean and intermediate estimation

True value of h^l :

$$h^{l} = E^{l}h^{l-1} + u^{l}, \quad u^{l} \sim \mathcal{N}(0, R^{l})$$
$$z^{l} = h^{l} + v^{l}$$

Estimated mean of h^l :

$$\hat{\mu}^{l|l-1} = \mathbb{E}[h^l] = \mathbb{E}[E^l h^{l-1} + u^l]$$

$$\hat{\mu}^{l|l} = \hat{\mu}^{l|l-1} + q^l(z^l - \hat{\mu}^{l|l-1})$$
 estimation of mean gain in current layer

Estimated variance of h^l :

$$\hat{\Sigma}^{l|l-1} = \text{Cov}(h^l - \hat{\mu}^{l|l-1}) = E^l \hat{\Sigma}^{l-1|l-1} E^{l^T} + R^l$$

$$\hat{\Sigma}^{l|l} = \text{Cov}(h^l - \hat{\mu}^{l|l}) = \hat{\Sigma}^{l|l-1} + q^l (C^l - \hat{\Sigma}^{l|l-1}) + (1 - q^l)q^l (z^l - \hat{\mu}^{l|l-1})^2$$

True value of h^l :

$$h^{l} = E^{l}h^{l-1} + u^{l}, \quad u^{l} \sim \mathcal{N}(0, R^{l})$$
$$z^{l} = h^{l} + v^{l}$$

Estimated mean of h^l :

$$\widehat{\mu}^{l|l-1} = \mathbb{E}[h^l] = \mathbb{E}[E^l h^{l-1} + u^l]$$

$$\hat{\mu}^{l|l} = \hat{\mu}^{l|l-1} + q^l(z^l - \hat{\mu}^{l|l-1})$$

Estimated variance of h^l :

$$\hat{\Sigma}^{l|l-1} = \text{Cov}(h^l - \hat{\mu}^{l|l-1}) = E^l \hat{\Sigma}^{l-1|l-1} E^{l^T} + R^l$$

$$\hat{\Sigma}^{l|l} = \text{Cov}(h^l - \hat{\mu}^{l|l}) = \hat{\Sigma}^{l|l-1} + q^l (C^l - \hat{\Sigma}^{l|l-1}) + (1 - q^l)q^l (z^l - \hat{\mu}^{l|l-1})^2$$

observed covariance matrix

True value of h^l :

$$h^{l} = E^{l}h^{l-1} + u^{l}, \quad u^{l} \sim \mathcal{N}(0, R^{l})$$
$$z^{l} = h^{l} + v^{l}$$

Estimated mean of h^l :

$$\widehat{\mu}^{l|l-1} = \mathbb{E}[h^l] = \mathbb{E}[E^l h^{l-1} + u^l]$$

$$\hat{\mu}^{l|l} = \hat{\mu}^{l|l-1} + q^l(z^l - \hat{\mu}^{l|l-1})$$

Estimated variance of h^l :

$$\hat{\Sigma}^{l|l-1} = \text{Cov}(h^l - \hat{\mu}^{l|l-1}) = E^l \hat{\Sigma}^{l-1|l-1} E^{l^T} + R^l$$

$$\hat{\Sigma}^{l|l} = \text{Cov}(h^l - \hat{\mu}^{l|l}) = \hat{\Sigma}^{l|l-1} + q^l (C^l - \hat{\Sigma}^{l|l-1})$$

$$+ (1 - q^l) q^l (z^l - \hat{\mu}^{l|l-1})^2$$

optimized in training